cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093918 a(2k-1)=(2k-1)^2+k, a(2k)=6k^2+k+1: Last term in rows of triangle A093915.

Original entry on oeis.org

2, 8, 11, 27, 28, 58, 53, 101, 86, 156, 127, 223, 176, 302, 233, 393, 298, 496, 371, 611, 452, 738, 541, 877, 638, 1028, 743, 1191, 856, 1366, 977, 1553, 1106, 1752, 1243, 1963, 1388, 2186, 1541, 2421, 1702, 2668, 1871, 2927, 2048, 3198, 2233, 3481, 2426, 3776
Offset: 1

Views

Author

Amarnath Murthy, Apr 25 2004

Keywords

Comments

Initially defined as "leading diagonal" of the triangle A093915, a(n) is the last term in row n of A093915, i.e. a(n)=A093916(n)+n-1. - M. F. Hasler, Apr 04 2009

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{2,8,11,27,28,58},50] (* Harvey P. Dale, Oct 22 2013 *)
  • PARI
    A093918(n)=if(n%2,n^2,6*(n\2)^2)+n\2+1 \\ M. F. Hasler, Apr 04 2009

Formula

Equals A093915 o A000217 = A093916 + A023443. - M. F. Hasler, Apr 04 2009
a(n) = (3+(-1)^n+2*n+(5+(-1)^n)*n^2)/4. a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x*(x^2+2*x+2)*(x^3-x^2+3*x+1) / ((x-1)^3*(x+1)^3). - Colin Barker, Dec 18 2012

Extensions

Edited and extended beyond a(6) by M. F. Hasler, Apr 04 2009