A093963 Antidiagonal sums of array in A093966.
1, 3, 8, 20, 49, 123, 312, 824, 2221, 6235, 17904, 53348, 162545, 511747, 1645776, 5448600, 18404189, 63794611, 225353368, 814801812, 2999022641, 11274044075, 43100574472, 167987074584, 665229445293, 2681607587627, 10973746015456
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..875
Programs
-
Mathematica
A[n_, k_]:= A[n, k]= If[n==1, 1, If[k==1, n, If[2<=k
G. C. Greubel, Dec 29 2021 *) -
Sage
@CachedFunction def A(n, k): if (n==1): return 1 elif (k==1): return n elif (2 <= k < n+1): return factorial(k)*binomial(n, k) + sum( j*factorial(j)*binomial(n, j) for j in (1..k-1) ) else: return sum( j*factorial(j)*binomial(n, j) for j in (1..n) ) @CachedFunction def a(n): return sum( A(k, n-k+1) for k in (1..n) ) [a(n) for n in (1..30)] # G. C. Greubel, Dec 29 2021
Formula
Conjecture: 2*a(n) -5*a(n-1) -(n+2)*a(n-2) +2*(n+6)*a(n-3) +(n-13)*a(n-4) -4*(n-3)*a(n-5) +2*(n-3)*a(n-6) = 0. - R. J. Mathar, Nov 10 2013