cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093970 Number of subsets A of {1..n} such that there are no solutions to a+b+c=d for a,b,c,d in A.

Original entry on oeis.org

1, 2, 4, 6, 11, 21, 31, 55, 99, 145, 252, 430, 620, 1042, 1786, 2597, 4304, 7241, 10374, 17098, 28967, 41444, 68017, 113746, 162204, 268412, 449318, 640341, 1053604, 1764648, 2524852, 4154138, 6968215, 9935216, 16371249, 27594872, 39353636, 64914388, 109205201
Offset: 0

Views

Author

T. D. Noe, Apr 20 2004

Keywords

Comments

In sumset notation, the sequence gives the number of subsets A of {1..n} such that the intersection of A and 3A is empty. Using the Mathematica program, all such subsets can be printed.

Crossrefs

Cf. A007865 (number of sum-free subsets of 1..n).

Programs

  • Mathematica
    nn=20; SumFree3Q[s_List] := Module[{sumFree, i, j, k}, If[Length[s]<2, True, If[3s[[1]]>s[[ -1]], True, sumFree=True; i=1; While[sumFree&&i<=Length[s], j=i; While[sumFree&&j<=Length[s], k=j; While[sumFree&&k<=Length[s], sumFree=!MemberQ[s, s[[i]]+s[[j]]+s[[k]]]; k++ ]; j++ ]; i++ ]; sumFree]]]; ss={{}}; Table[If[n>0, ssNew={}; Do[t=Append[ss[[i]], n]; If[SumFree3Q[t], AppendTo[ssNew, t]], {i, Length[ss]}]; ss=Join[ss, ssNew]]; Length[ss], {n, 0, nn}]

Extensions

a(21)-a(38) from Fausto A. C. Cariboni, Sep 30 2020