A094071 Coefficients arising in combinatorial field theory.
1, 2, 10, 75, 572, 6293, 92962, 1395180, 25482135, 582310475, 13697614020, 364311810217, 11551145067139, 380339218683310, 13636394439014770, 563142483841155427, 24264229405883569164, 1114389674994185476663
Offset: 0
Keywords
References
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004.
Links
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators"
- A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson and A. I. Solomon, A product formula and combinatorial field theory
Programs
-
Maple
with(combinat):F:=series(exp(x+x^3/3!),x=0,25): seq((n+1)!*coeff(F,x^(n+1))*bell(n+1),n=0..20);
-
Mathematica
a[n_] := (n+1)! BellB[n+1] SeriesCoefficient[Exp[x+x^3/3!], {x, 0, n+1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 11 2018 *)
Formula
a(n)=(n+1)!*B(n+1)*[x^(n+1)](exp(x+x^3/3!)), where B(n) are the Bell numbers (A000110) - Emeric Deutsch, Nov 23 2004
Extensions
More terms from Emeric Deutsch, Nov 23 2004