A094073
Coefficients arising in combinatorial field theory.
Original entry on oeis.org
4, 240, 49938, 24608160, 23465221750, 38341895571708, 98780305524248572, 377796303580335320432, 2048907276496726375662702, 15198414983297581845761672560, 149768511689247547252666676150490
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..160
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators"
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
-
with(combinat): a:=n->bell(2*n)*(2*n)!*coeff(series(exp(x*sinh(x)), x=0,40), x^(2*n)): seq(a(n),n=1..13); # Emeric Deutsch, Jan 22 2005
-
a[n_] := (2n)! BellB[2n] SeriesCoefficient[Exp[x Sinh[x]], {x, 0, 2n}];
Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Nov 11 2018 *)
A094074
Coefficients arising in combinatorial field theory.
Original entry on oeis.org
1, 5, 129, 7485, 755265, 116338005, 25263540225, 7328358482445, 2730934406225025, 1269262202389906725, 718835160819268317825, 486853691847850902700125, 388278919916351519293663425
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..225
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators"
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
- A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson and A. I. Solomon, A product formula and combinatorial field theory, arXiv:quant-ph/0409152, 2004.
-
a[n_] := (2n)! SeriesCoefficient[(1-x^2)^(-1/2) Exp[2x^2/(1-x^2)], {x, 0, 2n}];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 11 2018 *)
A094072
Coefficients arising in combinatorial field theory.
Original entry on oeis.org
1, 6, 50, 615, 10192, 214571, 5544394, 171367020, 6208928376, 259542887975, 12356823485580, 662921411131909, 39714830070598204, 2636484537372437498, 192653800829700013970, 15405383160836582657251
Offset: 0
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators"
-
with(combinat): seq(bell(n+1)*sum(k^(n+1-k)*binomial(n+1,k),k=1..n+1),n=0..18);
-
Table[BellB[n+1]Sum[Binomial[n+1,k]k^(n+1-k),{k,n+1}],{n,0,20}] (* Harvey P. Dale, Feb 05 2015 *)
Original entry on oeis.org
1, 4, 20, 150, 1352, 15428, 203464, 3162960, 55405140, 1101298600, 24222234720, 590544046744, 15715973012248, 456341011254560, 14312979247985120, 484253161428902192, 17550722413456774848, 680244627812139042016, 28053748582811428182080, 1228896901162555453603712
Offset: 0
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004.
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators"
- A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson and A. I. Solomon, A product formula and combinatorial field theory
-
with(combinat): with(orthopoly): seq((I/sqrt(2))^(n+1)*H(n+1,-I/sqrt(2))*bell(n+1),n=0..17); # Emeric Deutsch, Nov 22 2004
-
a[n_] := Sum[StirlingS1[n+1, k] 2^k BellB[k, 1/2], {k, 0, n+1}] BellB[n+1];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 07 2018 *)
Showing 1-4 of 4 results.
Comments