A094073 Coefficients arising in combinatorial field theory.
4, 240, 49938, 24608160, 23465221750, 38341895571708, 98780305524248572, 377796303580335320432, 2048907276496726375662702, 15198414983297581845761672560, 149768511689247547252666676150490
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..160
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators"
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
Programs
-
Maple
with(combinat): a:=n->bell(2*n)*(2*n)!*coeff(series(exp(x*sinh(x)), x=0,40), x^(2*n)): seq(a(n),n=1..13); # Emeric Deutsch, Jan 22 2005
-
Mathematica
a[n_] := (2n)! BellB[2n] SeriesCoefficient[Exp[x Sinh[x]], {x, 0, 2n}]; Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Nov 11 2018 *)
Formula
a(n) = (2n)!*bell(2n)*coeff(exp(x*sinh(x)), x^(2n)). - Emeric Deutsch, Jan 22 2005
Extensions
More terms from Emeric Deutsch, Jan 22 2005