cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094103 a(n) = sum along n-th diagonal of A094102 (sloping downward to left).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 13, 16, 22, 26, 37, 43, 60, 71, 98, 115, 160, 187, 259, 304, 420, 492, 681, 797, 1102, 1291, 1784, 2089, 2888, 3381, 4673, 5472, 7562, 8854, 12237, 14327, 19800, 23183, 32038, 37511, 51840, 60695, 83879, 98208, 135720, 158904, 219601
Offset: 1

Views

Author

Alysia Veenhof (ladyluck1899(AT)hotmail.com), May 05 2004

Keywords

Examples

			a(8) = 2+3+2+1+1 = 9.
		

Crossrefs

Cf. A094102.

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^2+x^3)/((1-x^3)(1-x^2-x^4)),{x,0,60}],x] (* or *) LinearRecurrence[{0,1,1,1,-1,0,-1},{1,1,2,3,4,5,8},61] (* Harvey P. Dale, Oct 09 2011 *)

Formula

G.f.: (1+x+x^2+x^3) / ((1-x^3)*(1-x^2-x^4)).
a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=4, a(6)=5, a(7)=8, a(n) = a(n-2)+a(n-3)+a(n-4)-a(n-5)-a(n-7). - Harvey P. Dale, Oct 09 2011

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 24 2004

A134404 Triangle read by rows in which row n contains Fib(0), ..., Fib(n-1), Fib(n), Fib(n-1), ..., Fib(0).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 2, 3, 2, 1, 1, 0, 0, 1, 1, 2, 3, 5, 3, 2, 1, 1, 0, 0, 1, 1, 2, 3, 5, 8, 5, 3, 2, 1, 1, 0, 0, 1, 1, 2, 3, 5, 8, 13, 8, 5, 3, 2, 1, 1, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 13, 8, 5, 3, 2, 1, 1, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 21, 13, 8, 5
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2008

Keywords

Examples

			Triangle begins:
0
0 1 0
0 1 1 1 0
0 1 1 2 1 1 0
0 1 1 2 3 2 1 1 0
0 1 1 2 3 5 3 2 1 1 0
0 1 1 2 3 5 8 5 3 2 1 1 0
0 1 1 2 3 5 8 13 8 5 3 2 1 1 0
0 1 1 2 3 5 8 13 21 13 8 5 3 2 1 1 0
0 1 1 2 3 5 8 13 21 34 21 13 8 5 3 2 1 1 0
0 1 1 2 3 5 8 13 21 34 55 34 21 13 8 5 3 2 1 1 0
0 1 1 2 3 5 8 13 21 34 55 89 55 34 21 13 8 5 3 2 1 1 0
		

Crossrefs

Cf. A094102.
Showing 1-2 of 2 results.