A094103 a(n) = sum along n-th diagonal of A094102 (sloping downward to left).
1, 1, 2, 3, 4, 5, 8, 9, 13, 16, 22, 26, 37, 43, 60, 71, 98, 115, 160, 187, 259, 304, 420, 492, 681, 797, 1102, 1291, 1784, 2089, 2888, 3381, 4673, 5472, 7562, 8854, 12237, 14327, 19800, 23183, 32038, 37511, 51840, 60695, 83879, 98208, 135720, 158904, 219601
Offset: 1
Examples
a(8) = 2+3+2+1+1 = 9.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,0,-1).
Crossrefs
Cf. A094102.
Programs
-
Mathematica
CoefficientList[Series[(1+x+x^2+x^3)/((1-x^3)(1-x^2-x^4)),{x,0,60}],x] (* or *) LinearRecurrence[{0,1,1,1,-1,0,-1},{1,1,2,3,4,5,8},61] (* Harvey P. Dale, Oct 09 2011 *)
Formula
G.f.: (1+x+x^2+x^3) / ((1-x^3)*(1-x^2-x^4)).
a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=4, a(6)=5, a(7)=8, a(n) = a(n-2)+a(n-3)+a(n-4)-a(n-5)-a(n-7). - Harvey P. Dale, Oct 09 2011
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 24 2004