A094170 Number of quasi-triominoes in an n X n bounding box.
0, 0, 1, 10, 33, 88, 187, 360, 625, 1024, 1581, 2350, 3361, 4680, 6343, 8428, 10977, 14080, 17785, 22194, 27361, 33400, 40371, 48400, 57553, 67968, 79717, 92950, 107745, 124264, 142591, 162900, 185281, 209920, 236913, 266458, 298657, 333720, 371755, 412984, 457521
Offset: 0
Examples
Illustration of a(3), the 10 quasi-triominoes that fit into a 3 X 3 bounding box: XXX -XX XX- X-X X-X XX- X-X X-X X-- X-- --- -X- --X X-- -X- --- --- --- -X- --X --- --- --- --- --- --X X-- -X- --X -X-
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Erich Friedman, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
Programs
-
Mathematica
CoefficientList[Series[x^2 (x^5 + x^4 + 4 x^3 + 4 x^2 + 7 x + 1)/((1 - x)^5 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 17 2014 *)
-
PARI
Vec(-x^2*(x^5+x^4+4*x^3+4*x^2+7*x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ Colin Barker, Feb 16 2014
Formula
a(n) = (1/32)*(6*n^4 - 12*n^3 + 32*n^2 - 58*n + 29 - (6*n-3)*(-1)^n). - Ralf Stephan, Dec 03 2004
G.f.: -x^2*(x^5+x^4+4*x^3+4*x^2+7*x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Feb 15 2014
Extensions
Corrected and extended by Jon Wild, May 11 2004
More terms from Colin Barker, Feb 16 2014
Comments