A094310 Triangle read by rows: T(n,k), the k-th term of the n-th row, is the product of all numbers from 1 to n except k: T(n,k) = n!/k.
1, 2, 1, 6, 3, 2, 24, 12, 8, 6, 120, 60, 40, 30, 24, 720, 360, 240, 180, 144, 120, 5040, 2520, 1680, 1260, 1008, 840, 720, 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040, 362880, 181440, 120960, 90720, 72576, 60480, 51840, 45360, 40320, 3628800, 1814400, 1209600, 907200, 725760, 604800, 518400, 453600, 403200, 362880
Offset: 1
Examples
Triangle begins as: 1; 2, 1; 6, 3, 2; 24, 12, 8, 6; 120, 60, 40, 30, 24; 720, 360, 240, 180, 144, 120; 5040, 2520, 1680, 1260, 1008, 840, 720; 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040; ... T(4,2) counts the 12 permutations of [4] with elements 1 and 2 in the same cycle, namely, (1 2)(3 4), (1 2)(3)(4), (1 2 3)(4), (1 3 2)(4), (1 2 4)(3), (1 4 2)(3), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
seq(seq(n!/k, k=1..n), n=1..10);
-
Mathematica
Table[n!/k, {n,10}, {k,n}]//Flatten Table[n!/Range[n], {n,10}]//Flatten (* Harvey P. Dale, Mar 12 2016 *)
Formula
E.g.f. for column k: x^k/(k*(1-x)).
T(n,k)*k = n*n! = A001563(n).
Extensions
More terms from Philippe Deléham, Jun 11 2005
Comments