A094314 Triangle read by rows: T(n,k) = number of ways of seating n couples around a circular table so that exactly k married couples are adjacent (0 <= k <= n).
1, 0, 1, 0, 0, 2, 1, 0, 3, 2, 2, 8, 4, 8, 2, 13, 30, 40, 20, 15, 2, 80, 192, 210, 152, 60, 24, 2, 579, 1344, 1477, 994, 469, 140, 35, 2, 4738, 10800, 11672, 7888, 3660, 1232, 280, 48, 2, 43387, 97434, 104256, 70152, 32958, 11268, 2856, 504, 63, 2, 439792, 976000, 1036050, 695760, 328920, 115056, 30300, 6000, 840, 80, 2
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 0, 2; 1, 0, 3, 2; 2, 8, 4, 8, 2; 13, 30, 40, 20, 15, 2; 80, 192, 210, 152, 60, 24, 2; 579, 1344, 1477, 994, 469, 140, 35, 2; 4738, 10800, 11672, 7888, 3660, 1232, 280, 48, 2; ...
References
- I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See Table 1.
- Tolman, L. Kirk, "Extensions of derangements", Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing, Humboldt State University, Arcata, California, September 5-7, 1979. Vol. 26. Utilitas Mathematica Pub., 1980. See Table I.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
- Anthony C. Robin, 90.72 Circular Wife Swapping, The Mathematical Gazette, Vol. 90, No. 519 (Nov., 2006), pp. 471-478.
- L. Takacs, On the probleme des menages, Discr. Math. 36 (3) (1981) 289-297, Table 1.
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= If[n<2, (1+(-1)^(n-k))/2, Sum[(-1)^j*(2*n*(n-k-j)!/(2*n-k-j))* Binomial[k+j, k]*Binomial[2*n-k-j, k+j], {j, 0, n-k}]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 15 2021 *)
-
Sage
def A094314(n,k): return (1+(-1)^(n+k))/2 if (n<2) else sum( (-1)^j*(2*n*factorial(n-k-j)/(2*n-k-j))*binomial(k+j, k)*binomial(2*n-k-j, k+j) for j in (0..n-k) ) flatten([[A094314(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 15 2021
Formula
Sum_{k=0..n} T(n,k) = n!.
T(n, k) = Sum_{j=0..n-k} (-1)^j*(2*n*(n-k-j)!/(2*n-k-j))*binomial(k+j, k) * binomial(2*n-k-j, k+j) for n > 1, T(0, 0) = T(1, 1) = 1, and T(1, 0) = 0. - G. C. Greubel, May 15 2021
Comments