cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094322 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k pyramids.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 4, 3, 3, 3, 1, 13, 11, 7, 6, 4, 1, 42, 37, 23, 14, 10, 5, 1, 139, 122, 78, 43, 25, 15, 6, 1, 470, 408, 262, 145, 75, 41, 21, 7, 1, 1616, 1390, 887, 494, 251, 124, 63, 28, 8, 1, 5632, 4810, 3048, 1694, 864, 414, 196, 92, 36, 9, 1, 19852, 16857, 10622
Offset: 0

Views

Author

Emeric Deutsch, Jun 03 2004

Keywords

Comments

A pyramid in a Dyck path is a factor of the form U^j D^j (j>0), starting at the x-axis. Here U=(1,1) and D(1,-1). This definition differs from the one in A091866. Column k=0 is A082989. Row sums are the Catalan numbers (A000108).

Examples

			T(3,2)=2 because there are two Dyck paths of semilength 3 having 2 pyramids: (UD)(UUDD) and (UUDD)(UD) (pyramids shown between parentheses).
Triangle begins:
[1];
[0, 1];
[0, 1, 1];
[1, 1, 2, 1];
[4, 3, 3, 3, 1];
[13, 11, 7, 6, 4, 1];
[42, 37, 23, 14, 10, 5, 1];
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=(1-z)/(1-z*C+z^2*C-t*z): Gserz:=simplify(series(G,z=0,16)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(Gserz,z^n)) od: seq([subs(t=0,P[n]),seq(coeff(P[n],t^k),k=1..n)],n=0..14);
    # second Maple program:
    b:= proc(x, y, u, t) option remember; expand(`if`(y<0 or y>x, 0,
          `if`(x=0, `if`(t, z, 1), (b(x-1, y-1, false, t)+
          b(x-1, y+1, true, t and u or y=0))*`if`(t and y=0, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p,z,i), i=0..n))(b(2*n, 0, false$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Jul 22 2015
  • Mathematica
    b[x_, y_, u_, t_] := b[x, y, u, t] = Expand[If[y<0 || y>x, 0, If[x==0, If[ t, z, 1], (b[x-1, y-1, False, t] + b[x-1, y+1, True, t && u || y == 0]) * If[t && y==0, z, 1]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, n}]][b[2*n, 0, False, False]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 29 2016, after Alois P. Heinz *)

Formula

G.f.: G=G(t,z) = (1-z)/(1-zC+z^2*C -tz), where C = [1-sqrt(1-4z)]/(2z) is the Catalan function.