A094361 Pair-reversal of 1,4,4,16,16...
4, 1, 16, 4, 64, 16, 256, 64, 1024, 256, 4096, 1024, 16384, 4096, 65536, 16384, 262144, 65536, 1048576, 262144, 4194304, 1048576, 16777216, 4194304, 67108864, 16777216, 268435456, 67108864, 1073741824, 268435456, 4294967296, 1073741824
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,4).
Crossrefs
Cf. A076736.
Programs
-
Mathematica
LinearRecurrence[{0,4},{4,1},50] (* Harvey P. Dale, Apr 15 2017 *)
Formula
a(n) = k^(n/2)(1+k*sqrt(k)-(1-ksqrt(k))(-1)^n)/(2*sqrt(k)), the pair reversal of 1,k,k,k^2,k^2,k^3,k^3,... for k=4.
G.f.: (4+x)/(1-4*x^2).
a(n) = (9*2^n+7*(-2)^n)/4.
Recurrence: a(n) = 4a(n-2), a(0)=4, a(1)=1. - Ralf Stephan, Jul 17 2013