cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094371 Numbers with incrementally smallest ratio A002034(n)/n.

Original entry on oeis.org

1, 6, 12, 20, 24, 40, 60, 80, 90, 112, 120, 180, 240, 315, 336, 360, 504, 560, 630, 720, 1008, 1260, 1680, 2016, 2240, 2520, 3360, 4032, 4480, 5040, 6720, 8064, 10080, 12096, 12960, 13440, 17280, 18144, 20160, 24192, 25920, 30240, 34560, 36288, 40320, 51840, 60480, 72576, 86400, 90720, 103680, 113400, 120960, 145152, 151200, 172800, 181440, 226800, 241920, 259200, 295680, 302400
Offset: 1

Views

Author

Jonathan Sondow, Apr 28 2004

Keywords

Comments

The factorials, where A002034(n!)/n! = 1/(n-1)!, appear to form a subsequence. The numbers A007672(a(n)) are small.
a(n) is either even, 19k, 23k or R*k, where R is a repunit prime. For example at 2.19.23=874, the corresponding repunit is divisible by 3 repunit primes. - Labos Elemer, Jun 04 2004

Examples

			The first 5 incrementally smallest ratios A002034(n)/n are 1, 1/2, 1/3, 1/4, 1/6. They occur at n = 1, 6, 12, 20, 24.
		

Crossrefs

Programs

  • Mathematica
    (A002034[n_] := (m=1; While[ !IntegerQ[m!/n], m++ ]; m); M = {}; L = {}; Do[With[{s = A002034[n]}, If[s/n < Min[M], M = Append[M, s/n]; L = Append[L, n]]], {n, 100}]; L)
    A002034[1] := 1; A002034[n_] := Max[A002034 @@@ FactorInteger[n]]; A002034[p_, 1] := p; A002034[p_, alpha_] := A002034[p, alpha] = Module[{a, k, r, i, nu, k0 = alpha(p - 1)}, i = nu = Floor[Log[p, 1 + k0]]; a[1] = 1; a[n_] := (p^n - 1)/(p - 1); k[nu] = Quotient[alpha, a[nu]]; r[nu] = alpha - k[nu]a[nu]; While[r[i] > 0, k[i - 1] = Quotient[r[i], a[i - 1]]; r[i - 1] = r[i] - k[i - 1]a[i - 1]; i-- ]; k0 + Plus @@ k /@ Range[i, nu]]; L = M = {}; a = Infinity; Do[ s = A002034[n]; If[s/n < a, a = s/n; AppendTo[M, a]; AppendTo[L, n]], {n, 40320}]; L (* Eric W. Weisstein, May 17 2004 *)

Extensions

More terms from Robert G. Wilson v, May 15 2004