cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094376 Least number having exactly n representations as ab+ac+bc with 0 < a < b < c.

Original entry on oeis.org

1, 11, 23, 41, 47, 59, 71, 116, 119, 131, 164, 425, 191, 236, 239, 446, 335, 419, 311, 404, 431, 584, 647, 524, 479, 1019, 831, 776, 671, 944, 719, 1076, 839, 1004, 959, 1889, 1196, 2099, 1271, 1856, 1151, 1931, 1391, 1676, 1319, 1616, 1751, 3275, 1511
Offset: 0

Views

Author

T. D. Noe and Robert G. Wilson v, Apr 28 2004

Keywords

Comments

Note that the Mathematica program computes A094376, A094377 and A094378, but outputs only this sequence.

Examples

			a(2) = 23 because 23 is the least number with 2 representations: (a,b,c) = (1,2,7) and (1,3,5).
		

References

Crossrefs

Cf. A000926 (n having no representations), A093669 (n having one representation), A025052, A094377, A094378.

Programs

  • Maple
    f:= proc(n) local a, t, s;
      t:= 0;
      for a from 1 to floor(sqrt(n/3)) do
        t:= t + nops(select(s -> s > 2*a and n+a^2 > s^2, numtheory:-divisors(n+a^2)))
      od;
      t
    end proc:
    N:= 200: # for a(0)..a(N)
    V:= Array(0..N): count:= 0:
    for n from 1 while count < N+1 do
       v:= f(n); if v <= N and V[v] = 0 then
          count:= count+1; V[v]:= n; fi
    od:
    seq(V[i],i=0..N); # Robert Israel, May 05 2021
  • Mathematica
    cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++;], {n, 10000}]; Table[nSol[[i, 1]], {i, cntMax+1}]