A094384 Determinant of n X n partial Hadamard matrix with coefficient m(i,j) 1<=i,j<=n (see comment).
1, -2, 4, 16, -32, -128, -512, 4096, -8192, -32768, -131072, 1048576, 4194304, -33554432, 268435456, 4294967296, -8589934592, -34359738368, -137438953472, 1099511627776, 4398046511104, -35184372088832, 281474976710656
Offset: 1
Keywords
Examples
M(2)=/1,-1/-1,-1/ then a(2)=detM(2)=-2
Programs
-
Python
from sympy import Matrix def A094384(n): m = Matrix([1]) for i in range((n-1).bit_length()): m = Matrix([[m, -m],[-m, -m]]) return m[:n,:n].det() # Chai Wah Wu, Nov 12 2024
Formula
It appears that abs(a(n))=2^A000788(n). What is the rule for signs? Does sum(k=1, n, a(k+1)/a(k))=0 iff n is in A073536 ?
Conjecture: a(n) = (-2)^A000788(n-1). - Chai Wah Wu, Nov 12 2024
Comments