A094392 Antidiagonals of the tables formed from b(m,2,n,n), which is defined in Du 1989.
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 8, 1, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 1, 1, 5, 21, 1, 1, 1, 1, 1, 1, 2, 7, 34, 1, 1, 1, 1, 1, 1, 1, 3, 11, 55, 1, 1, 1, 1, 1, 1, 1, 1, 5, 16, 89, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 25, 144, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 11, 37, 233, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
E.g., for m = 5 and n = 2, b(5,2,2,2)= b(3,2,1,2) + b(4,2,2,2)= 2 because of the definition in the reference. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 8 3 1 1 1 1 1 1 1 1 1 1 1 1 1 13 5 2 1 1 1 1 1 1 1 1 1 1 1 1 21 7 3 1 1 1 1 1 1 1 1 1 1 1 1 34 11 5 2 1 1 1 1 1 1 1 1 1 1 1 55 16 7 3 1 1 1 1 1 1 1 1 1 1 1 89 25 11 5 2 1 1 1 1 1 1 1 1 1 1 144 37 15 7 3 1 1 1 1 1 1 1 1 1 1 233 57 23 11 5 2 1 1 1 1 1 1 1 1 1 377 85 32 15 7 3 1 1 1 1 1 1 1 1 1 610 130 49 23 11 5 2 1 1 1 1 1 1 1 1
Links
- Bau-Sen Du, A Simple Method Which Generates Infinitely Many Congruence Identities, Fib. Quart. 27 (1989), 116-124.
- Bau-Sen Du, A Simple Method Which Generates Infinitely Many Congruence Identities, arXiv:0706.2421 [math.NT], 2007.
Crossrefs
Programs
-
Maple
b := proc(k,i,j,n) option remember; if k = 1 then if i = 1 then return 0; end if; if i = 2 then if j = n then return 1; end if; return 0; end if; end if; if k = 2 then if i = 1 then return 1; end if; if i = 2 then if j = n then return 1; end if; return 0; end if; end if; if j = n then return b(k-2, i, 1, n) + b(k-1, i, n, n); end if; return b(k-2, i, 1, n) + b(k-2, i, j+1, n); end proc; # Chris Deugau (deugaucj(AT)uvic.ca), Dec 19 2005
-
Mathematica
b[k_, i_, j_, n_] := b[k, i, j, n] = Which[k == 1, Which[i == 1, 0, i == 2 , If[j == n, 1, 0], True, 0], k == 2, Which[i == 1, 1, i == 2, If[j == n, 1, 0], True, 0], j == n, b[k - 2, i, 1, n] + b[k - 1, i, n, n], True, b[k - 2, i, 1, n] + b[k - 2, i, j + 1, n]]; a[m_, n_] := b[m, 2, n, n]; Table[a[m - n + 1, n], {m, 1, 14}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, adapted from Maple *)
Formula
For i=2 and k >= 1 b(k+2, 2, n, n)=b(k, 2, 1, n) + b(k+1, 2, n, n). The remaining portion for the recurrence is defined in Du 1989.
Extensions
Corrected and extended by Chris Deugau (deugaucj(AT)uvic.ca), Dec 19 2005
Typo 891 -> 89,1 corrected by Jean-François Alcover, Nov 21 2017