A094415
Triangle T read by rows: dot product * .
1, 4, 5, 10, 13, 13, 20, 26, 28, 26, 35, 45, 50, 50, 45, 56, 71, 80, 83, 80, 71, 84, 105, 119, 126, 126, 119, 105, 120, 148, 168, 180, 184, 180, 168, 148, 165, 201, 228, 246, 255, 255, 246, 228, 201, 220, 265, 300, 325, 340, 345, 340, 325, 300, 265, 286, 341
Offset: 0
Examples
Triangle begins as: 1; 4, 5; 10, 13, 13; 20, 26, 28, 26; 35, 45, 50, 50, 45; 56, 71, 80, 83, 80, 71;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 ))); # G. C. Greubel, Oct 30 2019
-
Magma
[(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6: k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
Maple
seq(seq( (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 , k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Mathematica
Table[(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
PARI
T(n,k) = (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6; for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
Sage
[[(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
Formula
T(n, k) = n*(n^2 + 3*n*(1+k) + 2 - 3*k^2)/6 for n >= 0, 0 <= k <= n.