A094425 Numbers n such that F_n(x) and F_n(1-x) have a common factor mod 2, with F_n(x) = U(n-1,x/2) the monic Chebyshev polynomials of second kind; this lists only the primitive elements of the set.
5, 6, 17, 31, 33, 63, 127, 129, 171, 257, 511, 683, 2047, 2731, 2979, 3277, 3641, 8191, 28197, 43691, 48771, 52429, 61681, 65537, 85489, 131071
Offset: 1
References
- Dieter Gebhardt, "Cross pattern puzzles revisited," Cubism For Fun 69 (March 2006), 23-25.
Links
- K. Sutner, Linear cellular automata and the Garden-of-Eden, Math. Intelligencer, 11 (No. 2, 1989), 49-53.
- K. Sutner, The computational complexity of cellular automata, in Lect. Notes Computer Sci., 380 (1989), 451-459.
- K. Sutner, sigma-Automata and Chebyshev-polynomials, Theoretical Comp. Sci., 230 (2000), 49-73.
- M. Hunziker, A. Machiavelo and J. Park, Chebyshev polynomials over finite fields and reversibility of sigma-automata on square grids, Theoretical Comp. Sci., 320 (2004), 465-483.
- Eric Weisstein's World of Mathematics, Lights-Out Puzzle
Extensions
Gebhardt and Sutner references from Don Knuth, May 11 2006
Comments