A094434 a(n) = rightmost term of M^n * [1 0 0], with M = the 3 X 3 matrix [1 -1 0 / -1 3 -2 / 0 -2 2].
0, 2, 12, 60, 288, 1368, 6480, 30672, 145152, 686880, 3250368, 15380928, 72783360, 344414592, 1629787392, 7712236800, 36494696448, 172694757888, 817200368640, 3867033664512, 18298999775232, 86591796664320, 409756781334528
Offset: 1
Examples
a(4) = 60 since M^4 * [1 0 0] = [24 -84 60].
References
- Carl D. Meyer, "Matrix Analysis and Applied Linear Algebra", SIAM, 2000, p. 86-87.
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-6).
Programs
-
Mathematica
Table[(MatrixPower[{{1, -1, 0}, {-1, 3, -2}, {0, -2, 2}}, n].{1, 0, 0})[[3]], {n, 24}] (* Robert G. Wilson v *) LinearRecurrence[{6,-6},{0,2},30] (* Harvey P. Dale, May 01 2017 *)
Formula
a(n) = 6*a(n-1)-6*a(n-2). G.f.: 2*x^2/(1-6*x+6*x^2). [Colin Barker, Sep 05 2012]
Extensions
More terms from Robert G. Wilson v, May 08 2004
Comments