A094437 Triangular array T(n,k) = Fibonacci(k+2)*C(n,k), k=0..n, n>=0.
1, 1, 2, 1, 4, 3, 1, 6, 9, 5, 1, 8, 18, 20, 8, 1, 10, 30, 50, 40, 13, 1, 12, 45, 100, 120, 78, 21, 1, 14, 63, 175, 280, 273, 147, 34, 1, 16, 84, 280, 560, 728, 588, 272, 55, 1, 18, 108, 420, 1008, 1638, 1764, 1224, 495, 89, 1, 20, 135, 600, 1680, 3276, 4410, 4080, 2475, 890
Offset: 0
Examples
First four rows: 1; 1 2; 1 4 3; 1 6 9 5; sum = 1+6+9+5=21=F(8); alt.sum = 1-6+9-5=-1=-F(1). T(3,2)=F(4)*C(3,2)=3*3=9. From _Philippe Deléham_, Apr 28 2012: (Start) (1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, ...) begins : 1; 1, 0; 1, 2, 0; 1, 4, 3, 0; 1, 6, 9, 5, 0; 1, 8, 18, 20, 8, 0; . (End)
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(k+2) ))); # G. C. Greubel, Oct 30 2019
-
Magma
[Binomial(n,k)*Fibonacci(k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
Maple
with(combinat); seq(seq(fibonacci(k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Mathematica
(* First program *) u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A094436 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A094437 *) (* Second program *) Table[Fibonacci[k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
PARI
T(n,k) = binomial(n,k)*fibonacci(k+2); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
Sage
[[binomial(n,k)*fibonacci(k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
Formula
From Philippe Deléham, Apr 28 2012: (Start)
As DELTA-triangle T(n,k):
G.f.: (1-x-y*x+2*y*x^2-y^2*x^2)/(1-2*x-y*x+x^2+y*x^2-y^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k+2).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+2).
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = Fibonacci(n-2). (End)
Comments