A094442 Triangular array T(n,k) = Fibonacci(n+2-k)*C(n,k), 0 <= k <= n.
1, 2, 1, 3, 4, 1, 5, 9, 6, 1, 8, 20, 18, 8, 1, 13, 40, 50, 30, 10, 1, 21, 78, 120, 100, 45, 12, 1, 34, 147, 273, 280, 175, 63, 14, 1, 55, 272, 588, 728, 560, 280, 84, 16, 1, 89, 495, 1224, 1764, 1638, 1008, 420, 108, 18, 1, 144, 890, 2475, 4080, 4410, 3276, 1680, 600, 135, 20, 1
Offset: 0
Examples
First five rows: 1; 2, 1; 3, 4, 1; 5, 9, 6, 1; 8, 20, 18, 8, 1; First three polynomials v(n,x): 1, 2 + x, 3 + 4x + x^2. From _Philippe Deléham_, Apr 02 2012: (Start) (0, 2, -1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, ...) begins: 1; 0, 1; 0, 2, 1; 0, 3, 4, 1; 0, 5, 9, 6, 1; 0, 8, 20, 18, 8, 1. (End)
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+2) ))); # G. C. Greubel, Oct 30 2019
-
Magma
[Binomial(n,k)*Fibonacci(n-k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
Maple
with(combinat); seq(seq(fibonacci(n-k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Mathematica
(* First program *) u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A094441 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A094442 *) (* Second program *) Table[Fibonacci[n-k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
PARI
T(n,k) = binomial(n,k)*fibonacci(n-k+2); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
Sage
[[binomial(n,k)*fibonacci(n-k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
Formula
Let u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + (x+1)*v(n-1, x), where u(1,x)=1, v(1,x)=1 then the coefficients of the polynomials of v(n,x) produce this sequence.
T(n,k) = T(n-1, k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,1) = 1, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k >= n. - Philippe Deléham, Apr 02 2012
From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+2).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+2)
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = (-1)^n * Fibonacci(n-2). (End)
Comments