cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A094488 Primes p such that 2^j+p^j are primes for j=0,1,2,8.

Original entry on oeis.org

137, 2087, 2687, 16067, 24107, 29207, 154787, 155537, 223007, 331907, 427877, 662897, 708137, 769997, 802127, 849047, 869597, 891887, 1031117, 1068497, 1261487, 1336337, 1712567, 1794677, 1807997, 1838297, 1990577, 2189987
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Examples

			For j=0 1+1=2 is prime; also terms should be lesser-twin-primes
because of p^1+2^1=p+2=prime; 3rd and 4th conditions are as
follows: prime=p^2+4 and prime=256+p^8.
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s1=Prime[j]+2;s2=4+Prime[j]^2;s8=256+Prime[j]^8; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
    Select[Prime[Range[200000]],AllTrue[{#+2,#^2+4,#^8+256},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 03 2018 *)
Showing 1-1 of 1 results.