cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094490 Primes p such that 2^j+p^j are primes for j=0,2,4,64.

Original entry on oeis.org

37, 1423, 8537, 61333, 397963, 419927, 699217, 1151603, 1156823, 1210793, 1746923, 1809163, 1915477, 2012113, 2713127, 3617683, 4001567, 4192033, 4760117, 4768133, 5099623, 5432153, 5801737, 5909737, 5924833, 6118157
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Examples

			For j=0 1+1=2 is prime; other conditions are:
because of p^2+4==prime; 3rd and 4th conditions are as
follows: prime=p^4+16 and prime=2^64+p^64.
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s2=4+Prime[j]^2;s4=16+Prime[j]^4;s64=2^64+Prime[j]^64 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s64], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
    Select[Prime[Range[500000]],AllTrue[Table[2^j+#^j,{j,{0,2,4,64}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 29 2015 *)