cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094496 Triangle read by rows: T(n,k) = binomial(n,k) - binomial(n,k) mod n^2, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 81, 81, 81, 81, 0, 0, 0, 0, 0, 0, 100, 200, 200, 200, 100, 0, 0, 0, 0, 0, 0, 121, 242, 363, 363, 242, 121, 0, 0, 0, 0, 0, 0, 144, 432, 720, 864, 720, 432, 144, 0, 0, 0
Offset: 0

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  0, 0, 0;
  0, 0, 0,   0;
  0, 0, 0,   0,   0;
  0, 0, 0,   0,   0,   0;
  0, 0, 0,   0,   0,   0,   0;
  0, 0, 0,   0,   0,   0,   0,   0;
  0, 0, 0,   0,  64,   0,   0,   0, 0;
  0, 0, 0,  81,  81,  81,  81,   0, 0, 0;
  0, 0, 0, 100, 200, 200, 200, 100, 0, 0, 0;
  ...
T(8,6) = binomial(8,4) - binomial(8,4) mod 8^2 = 70 - 6 = 64.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Table[Binomial[n, j]-Mod[Binomial[n, j], n^2], {j, 0, n}], {n, 1, 20}], 1]
  • PARI
    T(n,k) = my(x=binomial(n,k)); x - if(n, x % n^2) \\ Andrew Howroyd, Dec 12 2024

Formula

T(n,k) = A007318(n,k) - A094495(n,k).