A094527 Triangle T(n,k), read by rows, defined by T(n,k) = binomial(2*n,n-k).
1, 2, 1, 6, 4, 1, 20, 15, 6, 1, 70, 56, 28, 8, 1, 252, 210, 120, 45, 10, 1, 924, 792, 495, 220, 66, 12, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 184756, 167960
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 0: 1 1: 2 1 2: 6 4 1 3: 20 15 6 1 4: 70 56 28 8 1 5: 252 210 120 45 10 1 6: 924 792 495 220 66 12 1 7: 3432 3003 2002 1001 364 91 14 1 8: 12870 11440 8008 4368 1820 560 120 16 1 9: 48620 43758 31824 18564 8568 3060 816 153 18 1 10: 184756 167960 125970 77520 38760 15504 4845 1140 190 20 1 ... Reformatted ad extended by _Wolfdieter Lang_, Nov 22 2012 From _Paul Barry_, Sep 07 2009: (Start) Production array is 2, 1, 2, 2, 1, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1 (End) From _Wolfdieter Lang_, Nov 22 2012: (Start) Recurrence from the Riordan A-sequence [1,2,1]: T(4,1) = 56 = 1*T(3,0) + 2*T(3,1) + 1*T(3,2) = 1*20 + 2*15 + 1*6. Recurrence from the Riordan Z-sequence [2,2]: T(7,0) = 3432 = 2*T(6,0) + 2*T(6,1) = 2*924 + 2*792. See the _Philippe Deléham_ comment above. (End)
Links
- Indranil Ghosh, Rows 0..100 of triangle, flattened
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 19.
- A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From _N. J. A. Sloane_, Sep 16 2012
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
Programs
-
Maple
A094527 := proc(n,k) binomial(2*n,n-k) ; end proc: # R. J. Mathar, Jun 04 2013
-
Mathematica
T[n_, k_] := Binomial[2*n, n - k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
Formula
Riordan array (1/sqrt(1-4*x), (1-2*x-sqrt(1-4*x))/(2*x)). Column k has e.g.f. exp(2*x)*Bessel_I(k, 2*x). - Paul Barry, Jul 14 2005
Product of Riordan arrays (1/(1-x), x/(1-x)) (Pascal's triangle, A007318) and (1/sqrt(1-2x-3x^2), (1-x-sqrt(1-2x-3x^2))/(2x)) (A094531). Inverse is A110162. - Paul Barry, Jul 14 2005
T(n,k) = Sum_{j=0..n} C(n,j)*C(n,j-k). - Paul Barry, Mar 07 2006
Sum_{k=0..n} T(n,k)^2 = A036910(n). - Philippe Deléham, May 07 2006
Sum_{k=0..n} T(n,k)*(-1)^k = A088218(n). - Philippe Deléham, Mar 14 2007
From Wolfdieter Lang, Nov 22 2012: (Start)
The o.g.f. for the row polynomials P(n,x) := Sum_{k=0..n} T(n,k)*x^k is G(z,x) = (-x + (1+x)*z + x*z*c(z))/(sqrt(1-4*z)*((1+x)^2*z -x)) with c the o.g.f. of A000108 (Catalan). This follows from the Riordan property.
The o.g.f. for column no. k is (c(x)-1)^k/sqrt(1-4*x) (from the Riordan property). (End)
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - 2*x - sqrt(1 - 4*x) )/(2*x) and so belongs to the hitting time subgroup of the Riordan group (see Peart and Woan, Example 5.1).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 + x)^2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
From Peter Bala, Jul 21 2015: (Start)
n-th row polynomial R(n,t) = [x^n] ( (1 + (1 + t)*x)^2/(1 + t*x) )^n.
exp ( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (2 + t)*x + (5 + 4*t + t^2)*x^2 + ... is the o.g.f. for A039598. (End)
Extensions
Entry revised by N. J. A. Sloane, Mar 23 2007
Comments