cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094536 Number of binary words of length n that are not "bifix-free".

Original entry on oeis.org

0, 0, 2, 4, 10, 20, 44, 88, 182, 364, 740, 1480, 2980, 5960, 11960, 23920, 47914, 95828, 191804, 383608, 767500, 1535000, 3070568, 6141136, 12283388, 24566776, 49135784, 98271568, 196547560, 393095120, 786199088, 1572398176, 3144813974
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2004

Keywords

Comments

Also the number of binary strings of length n that begin with an even length palindrome. (E.g., f(4) = 10 with strings 0000 0001 0010 0011 0110 1001 1100 1101 1110 1111.) - Peter Kagey, Jan 11 2015
The probability that a random, infinite binary string begins with an even-length palindrome is: lim n -> infinity a(n)/2^n ~ 0.7322131597821108... . - Peter Kagey, Jan 26 2015

Crossrefs

See A003000 for much more information.
Cf. A094537.
A254128(n) gives the number of binary strings of length n that begin with an odd-length palindrome.

Programs

  • Maple
    a[0]:= 0:
    for n from 1 to 100 do
    if n::odd then a[n]:= 2*a[n-1]
    else a[n]:= 2*a[n-1] + 2^(n/2) - a[n/2]
    fi
    od:
    seq(a[i],i=0..100); # Robert Israel, Jan 12 2015
  • Mathematica
    b[0]=1;b[n_]:=b[n]=2*b[n-1]-(1+(-1)^n)/2*b[Floor[n/2]]; a[n_]:=2^n-b[n];Table[a[n], {n, 0, 34}]
  • Ruby
    s = [0,0]
    (2..N).each { |n| s << 2 * s[-1] + (n.odd? ? 0 : 2**(n/2) - s[n/2]) }

Formula

a(n) = 2^n - A003000(n).
Let b(0)=1; b(n) = 2*b(n-1) - 1/2*(1+(-1)^n)*b([n/2]); a(n) = 2^n - b(n). - Farideh Firoozbakht, Jun 10 2004
a(0) = 0; a(1) = 0; a(2*n+1) = 2*a(2*n); a(2*n) = 2*a(2*n-1) + 2^n - a(n). - Peter Kagey, Jan 11 2015
G.f. g(x) satisfies (1-2*x)*g(x) = 2*x^2/(1-2*x^2) - g(x^2). - Robert Israel, Jan 12 2015

Extensions

More terms from Farideh Firoozbakht, Jun 10 2004
Corrected by Don Rogers (donrogers42(AT)aol.com), Feb 15 2005