A094552 Numbers n such that there are integers a < b with a^2+(a+1)^2+...+(n-1)^2 = (n+1)^2+(n+2)^2+...+b^2.
52, 100, 137, 513, 565, 1247, 8195, 13041, 18921, 35344, 40223, 65918, 68906, 121759, 132720, 213831, 215221, 235469, 265654, 506049, 520654, 585046, 598337, 817454, 993142, 1339560, 1579353, 2331619, 2843086, 3594812
Offset: 1
Keywords
Examples
52 is in this sequence because 7^2+8^2+...+51^2 = 53^2+54^2+...+65^2.
Programs
-
Mathematica
lst={}; Do[i1=n-1; i2=n+1; s1=i1^2; s2=i2^2; While[i1>1 && s1!=s2, If[s1
Extensions
a(14)-a(30) from Donovan Johnson, Apr 20 2010
Comments