A094553 Numbers n such that there are integers a < b with a^2+(a+1)^2+...+(n-1)^2 = n^2+(n+1)^2+...+b^2.
5, 13, 25, 35, 39, 41, 51, 61, 85, 111, 113, 143, 145, 160, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 856, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2251, 2381, 2471, 2521, 2611, 2665, 2813, 2965, 3031
Offset: 1
Keywords
Examples
13 is in this sequence because 10^2+11^2+12^2 = 13^2+14^2.
Programs
-
Mathematica
lst={}; Do[i1=n-1; i2=n; s1=i1^2; s2=i2^2; While[i1>1 && s1!=s2, If[s1
Comments