cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094566 Triangle of binary products of Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 10, 13, 21, 24, 25, 26, 34, 55, 63, 64, 65, 68, 89, 144, 165, 168, 169, 170, 178, 233, 377, 432, 440, 441, 442, 445, 466, 610, 987, 1131, 1152, 1155, 1156, 1157, 1165, 1220, 1597, 2584, 2961, 3016, 3024, 3025, 3026, 3029, 3050, 3194, 4181
Offset: 1

Views

Author

Clark Kimberling, May 12 2004

Keywords

Comments

For n>1, row n consists of n numbers, first F(2n-2) and last F(2n-1).
Central numbers: (1,4,9,25,64,...), essentially A081016.
Row sums: A027991. Alternating row sums: 1,1,4,4,30,30,203,203; the sequence b=(1,4,30,203,1394,...) is A094567.
In each row, the difference between neighboring terms is a Fibonacci number.

Examples

			Rows 1 to 4:
1
1 2
3 4 5
8 9 10 13
		

Crossrefs

Programs

  • PARI
    pef(k, n) = fibonacci(2*k)*fibonacci(2*n-2*k);
    pof(k, n) = fibonacci(2*n-2*k+1)*fibonacci(2*k-1);
    tabl(nn) = {for (n=1, nn, if (n==1, print1(1, ", "), if (n % 2 == 0, for (k=1, n/2, print1(pef(k,n), ", ");); forstep (k=n/2, 1, -1, print1(pof(k,n), ", "););, for (k=1, n\2, print1(pef(k,n), ", ");); forstep (k=n\2+1, 1, -1, print1(pof(k,n), ", ");););); print(););} \\ Michel Marcus, May 04 2016

Formula

Row 1 is the single number 1. For m>=1, Row 2m: F(2)F(4m-2), F(4)F(4m-4), ..., F(2m)F(2m), F(2m+1)F(2m-1), F(2m+3)F(2m-3), ..., F(4m-1)F(1) Row 2m+1: F(2)F(4m), F(4)F(4m-2), ..., F(2m+1)F(2m+1), F(2m+3)F(2m-1), F(2m+5)F(2m-3), ..., F(4m+1)F(1)