A094568 Triangle of binary products of Fibonacci numbers.
2, 3, 5, 8, 10, 13, 21, 24, 26, 34, 55, 63, 65, 68, 89, 144, 165, 168, 170, 178, 233, 377, 432, 440, 442, 445, 466, 610, 987, 1131, 1152, 1155, 1157, 1165, 1220, 1597, 2584, 2961, 3016, 3024, 3026, 3029, 3050, 3194, 4181, 6765, 7752, 7896, 7917, 7920, 7922
Offset: 1
Examples
First four rows: 2 3 5 8 10 13 21 24 26 34
Links
- Clark Kimberling, Orderings of products of Fibonacci numbers, Fibonacci Quarterly 42:1 (2004), pp. 28-35.
Programs
-
PARI
pef(k, n) = fibonacci(2*k)*fibonacci(2*n-2*k); pof(k, n) = fibonacci(2*n-2*k+1)*fibonacci(2*k-1); isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); \\ from A010056 isfib2(x) = issquare(x) && isfib(sqrtint(x)); tabl(nn) = {for (n=2, nn, if (n % 2 == 0, for (k=1, n/2, if (! isfib2(x = pef(k,n)), print1(x, ", "));); forstep (k=n/2, 1, -1, if (! isfib2(x = pof(k,n)), print1(x, ", "));), for (k=1, n\2, if (! isfib2(x = pef(k,n)), print1(x, ", "));); forstep (k=n\2+1, 1, -1, if (! isfib2(x = pof(k,n)), print1(x, ", ")););); print(););} \\ Michel Marcus, May 04 2016
Comments