A094593 a(n) = (p-1)/x, where p = prime(n) and x = ord(3,p), the smallest positive integer such that 3^x == 1 mod p.
1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 5, 1, 2, 1, 2, 6, 3, 2, 6, 1, 2, 1, 2, 1, 3, 2, 4, 1, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 2, 4, 2, 12, 1, 1, 1, 1, 2, 4, 1, 2, 2, 2, 1, 2, 1, 9, 4, 1, 1, 1, 9, 2, 8, 1, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 2, 4, 10, 16, 3, 2, 1, 2
Offset: 3
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 3..1000
Crossrefs
Cf. A001917.
Programs
-
PARI
a(n)=(prime(n)-1)/if(n<0,0,k=1;while((3^k-1)%prime(n)>0,k++);k)
-
Python
from sympy import prime, n_order def A094593(n): p = prime(n) return 1 if n == 3 else (p-1)//n_order(3,p) # Chai Wah Wu, Jan 15 2020