cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094600 G.f. satisfies: a(2*n) equals coefficient of x^n in A(x)^(n+1) and a(2*n+1) equals coefficient of x^(n+1) in A(x)^(n+1), for n>=0, with a(0)=1.

Original entry on oeis.org

1, 1, 2, 5, 9, 28, 48, 145, 250, 831, 1404, 4664, 7875, 26748, 44960, 154265, 258777, 896644, 1501060, 5239975, 8758640, 30760060, 51350784, 181258264, 302271736, 1071490551, 1785262500, 6351444132, 10574365725, 37738804488, 62788919872
Offset: 0

Views

Author

Paul D. Hanna, May 13 2004

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 9*x^4 + 28*x^5 + 48*x^6 + 145*x^7 +...
Terms are formed from main and adjacent diagonals in the table of successive self-convolutions of this sequence:
[(1),(1), 2, 5, 9, 28, 48, 145, 250, 831, 1404, 4664,...];
[1,(2),(5), 14, 32, 94, 213, 588, 1343, 3726,...];
[1, 3,(9),(28), 75, 225, 590, 1656, 4287, 11780,...];
[1, 4, 14,(48),(145), 456, 1318, 3864, 10824, 30684,...];
[1, 5, 20, 75,(250),(831), 2590, 7980, 23755, 70155,...];
[1, 6, 27, 110, 399,(1404),(4664), 15102, 47355, 145880,...];
[1, 7, 35, 154, 602, 2240,(7875),(26748), 87892, 282093,...];
[1, 8, 44, 208, 870, 3416, 12648,(44960),(154265), 514920,...];
[1, 9, 54, 273, 1215, 5022, 19512, 72423,(258777),(896644),...]; ...
from which A094601 may be formed from the main diagonal:
[1/1, 2/2, 9/3, 48/4, 250/5, 1404/6, 7875/7, 44960/8, 258777/9,...].
Let G(x) be the g.f. of A094601:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 50*x^4 + 234*x^5 + 1125*x^6 + 5620*x^7 +...
then the logarithm begins:
log(G(x)) = x + 5*x^2/2 + 28*x^3/3 + 145*x^4/4 + 831*x^5/5 + 4664*x^6/6 +...
and is formed from the odd-indexed terms of this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n),G);for(i=1,ceil(log(n+1)/log(2)), G=serreverse(x/A)/x; A=subst(G+x*G',x,x^2)+x*subst(G',x,x^2)/subst(G,x,x^2) +x*O(x^n));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(2*n) = (n+1)*A094601(n) for n>=0.
Sum_{n>=1} a(2*n-1)*x^n/n = log(G(x)), where G(x) is the g.f. of A094601.
G.f. A(x) satisfies: A(x) = A(x*G(x)), where G(x) is the g.f. of A094601.
G.f.: A(x) = G(x^2) + x*G'(x^2)/G(x^2) + x^2*G'(x^2) where G(x) = (1/x)*Series_Reversion(x/A(x)) is the g.f. of A094601.

Extensions

Entry revised by Paul D. Hanna, Apr 17 2013