cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094601 G.f. satisfies: A(x) = F(x*A(x)), where F(x) is the g.f. of A094600.

Original entry on oeis.org

1, 1, 3, 12, 50, 234, 1125, 5620, 28753, 150106, 796240, 4279232, 23251672, 127518750, 704957715, 3924307492, 21978740682, 123758612644, 700204091361, 3978636187708, 22694470914700, 129904466979030, 745949776425002
Offset: 0

Views

Author

Paul D. Hanna, May 13 2004

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 50*x^4 + 234*x^5 + 1125*x^6 + 5620*x^7 +...
where
A(x) = Sum_{n>=1} A094600(2*n)*x^n/(n+1), and
log(A(x)) = Sum_{n>=1} A094600(2*n-1)*x^n/n,
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 145*x^4/4 + 831*x^5/5 + 4664*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1,n, A=subst(A+x*A', x, x^2*A^2)+x*A*subst(A', x, x^2*A^2)/subst(A, x, x^2*A^2) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = A094600(2*n)/(n+1) for n>=0.
G.f.: A(x) = exp( Sum_{n>=1} A094600(2*n-1)*x^n/n ).
G.f. satisfies: A(x) = A(y) + x*A(x)*A'(y)/A(y) + x^2*A(x)^2*A'(y) where y = x^2*A(x)^2.

Extensions

Entry revised by Paul D. Hanna, Apr 17 2013