cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094649 An accelerator sequence for Catalan's constant.

Original entry on oeis.org

4, 1, 7, 4, 19, 16, 58, 64, 187, 247, 622, 925, 2110, 3394, 7252, 12289, 25147, 44116, 87727, 157492, 307294, 560200, 1079371, 1987891, 3798310, 7043041, 13382818, 24927430, 47191492, 88165105, 166501903, 311686804, 587670811, 1101562312
Offset: 0

Views

Author

Paul Barry, May 18 2004

Keywords

Comments

From L. Edson Jeffery, Apr 03 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(9,1) =
(0 1 0 0)
(1 0 1 0)
(0 1 0 1)
(0 0 1 1).
Then a(n) = Trace(U^n). (End)
a(n)==1 (mod 3), a(3*n+1)==1 (mod 9). - Roman Witula, Sep 14 2012

Examples

			We have a(0)+a(3)=a(1)+a(2)=8, a(3)+a(4)=a(2)+a(5)=23, and a(7)+a(8)=a(9)+a(3)=247. - _Roman Witula_, Sep 14 2012
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 3, -2, -1}, {4, 1, 7, 4}, 34] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    Vec((4-3*x-6*x^2+2*x^3)/(1-x-3*x^2+2*x^3+x^4)+O(x^66)) /* Joerg Arndt, Apr 08 2011 */

Formula

G.f.: ( 4-3*x-6*x^2+2*x^3 ) / ( (x-1)*(x^3+3*x^2-1) )
a(n) = 1+(2*cos(Pi/9))^n+(-2*sin(Pi/18))^n+(-2*cos(2*Pi/9))^n.
a(n) = 2^n*Sum_{k=1..4} cos((2*k-1)*Pi/9)^n. - L. Edson Jeffery, Apr 03 2011
a(n) = 1 + (-1)^n*A215664(n), which is compatible with the last two formulas above. - Roman Witula, Sep 14 2012
a(n) = 3*a(n-2) + a(n-3) - 3, with a(0)=4, a(1)=1, and a(2)=7. - Roman Witula, Sep 14 2012