A094649 An accelerator sequence for Catalan's constant.
4, 1, 7, 4, 19, 16, 58, 64, 187, 247, 622, 925, 2110, 3394, 7252, 12289, 25147, 44116, 87727, 157492, 307294, 560200, 1079371, 1987891, 3798310, 7043041, 13382818, 24927430, 47191492, 88165105, 166501903, 311686804, 587670811, 1101562312
Offset: 0
Examples
We have a(0)+a(3)=a(1)+a(2)=8, a(3)+a(4)=a(2)+a(5)=23, and a(7)+a(8)=a(9)+a(3)=247. - _Roman Witula_, Sep 14 2012
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..3649
- A. Akbary and Q. Wang, On some permutation polynomials over finite fields, International Journal of Mathematics and Mathematical Sciences, 2005:16 (2005) 2631-2640.
- A. Akbary and Q. Wang, A generalized Lucas sequence and permutation binomials, Proceeding of the American Mathematical Society, 134 (1) (2006), 15-22, sequence a(n) with l=9.
- David M. Bradley, A Class of Series Acceleration Formulae for Catalan's Constant, The Ramanujan Journal, Vol. 3, Issue 2, 1999, pp. 159-173.
- David M. Bradley, A Class of Series Acceleration Formulae for Catalan's Constant, arXiv:0706.0356 [math.CA], 2007.
- Russell A. Gordon, Lucas Type Sequences and Sums of Binomial Coefficients, Integers (2023) Vol 23, Art. No. A84. See p. 21.
- L. E. Jeffery, Unit-primitive matrices
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
- Q. Wang, On generalized Lucas sequences, Contemp. Math. 531 (2010) 127-141, Table 2 (k=4)
- Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-1).
Programs
-
Mathematica
LinearRecurrence[{1, 3, -2, -1}, {4, 1, 7, 4}, 34] (* Jean-François Alcover, Sep 21 2017 *)
-
PARI
Vec((4-3*x-6*x^2+2*x^3)/(1-x-3*x^2+2*x^3+x^4)+O(x^66)) /* Joerg Arndt, Apr 08 2011 */
Formula
G.f.: ( 4-3*x-6*x^2+2*x^3 ) / ( (x-1)*(x^3+3*x^2-1) )
a(n) = 1+(2*cos(Pi/9))^n+(-2*sin(Pi/18))^n+(-2*cos(2*Pi/9))^n.
a(n) = 2^n*Sum_{k=1..4} cos((2*k-1)*Pi/9)^n. - L. Edson Jeffery, Apr 03 2011
a(n) = 1 + (-1)^n*A215664(n), which is compatible with the last two formulas above. - Roman Witula, Sep 14 2012
a(n) = 3*a(n-2) + a(n-3) - 3, with a(0)=4, a(1)=1, and a(2)=7. - Roman Witula, Sep 14 2012
Comments