A094660 Number of permissible patterns of primes in a fixed interval of n consecutive integers.
0, 1, 2, 4, 6, 9, 12, 18, 24, 34, 44, 58, 72, 100, 128, 169, 210, 267, 324, 429, 534, 694, 854, 1064, 1274, 1657, 2040, 2571, 3102, 3780, 4458, 5801, 7144, 9067, 10990, 13472, 15954, 20356, 24758, 30607, 36456, 44280, 52104, 66168, 80232, 98524, 116816, 140797, 164778
Offset: 0
Examples
a(5)=9 because primes can exist in interval as x.... .x... ..x.. ...x. ....x x.x.. .x.x. ..x.x or x...x
Links
- Similar work at Permissible Patterns.
Formula
a(n) = Sum_{k=1..floor((n+1)/2)} (n + 2 - 2*k)*A023189(k). - Jon E. Schoenfield, May 17 2024
Extensions
a(42)-a(48) from Pontus von Brömssen, Aug 25 2025
Comments