cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094667 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 4.

Original entry on oeis.org

1, 4, 14, 48, 165, 572, 2001, 7056, 25042, 89320, 319793, 1148184, 4131009, 14885468, 53697270, 193862592, 700312381, 2530902676, 9149426897, 33083393640, 119645675898, 432748165304, 1565346866889, 5662560013488, 20484930829825, 74108882866612, 268111981441886
Offset: 1

Views

Author

Herbert Kociemba, Jun 14 2004

Keywords

Programs

  • Maple
    with(NumberTheory): a := n -> add(binomial(2*n, n+k)*KroneckerSymbol(k, 20), k = 0..n): seq(a(n), n = 1..28); # Peter Luschny, Oct 14 2022
  • Mathematica
    Rest@ CoefficientList[Series[x (-1 + x)*(-1 + 3*x)/(1 - 8 x + 21 x^2 - 20 x^3 + 5 x^4), {x, 0, 24}], x] (* Michael De Vlieger, Aug 04 2021 *)

Formula

a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(2*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
G.f.: x*(-1+x)*(-1+3*x)/(1-8*x+21*x^2-20*x^3+5*x^4).
a(n) = Sum_{k=0..n} binomial(2*n,n+k)*(k|20), where (k|20) represents the Kronecker symbol. - Greg Dresden, Oct 09 2022