cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094678 a(n) = A003474(n)/n.

Original entry on oeis.org

1, 2, 6, 8, 32, 54, 208, 256, 1458, 2560, 10648, 17496, 70304, 151424, 629856, 819200, 5064320, 9565938, 40781104, 65536000, 331619184, 623589472, 2728756984, 3673320192, 22315420160, 32127240704, 188286357654, 321009188864, 1577709824480, 2975389355520, 13283298844816, 17626562560000
Offset: 1

Views

Author

Vladeta Jovovic, Jun 07 2004

Keywords

Comments

Number of normal bases for GF(3^n) over GF(3). - Joerg Arndt, Jul 03 2011
For n>=2, a(n) = f(n)/(2^(n-1)) where f(n) is the number of Hamiltonian cycles in the 3-ary de Bruijn graph (i.e., graph with 3*n nodes {0..3*n-1} and edges from each i to 3*i (mod 3*n), 3*i+1 (mod 3*n), and 3*i+2 (mod 3*n); cf. A192513). - Joerg Arndt, Jul 03 2011.
For details on this correspondence, see A192513. - Dmitrii Pasechnik, Dec 07 2014

Programs

  • Mathematica
    p = 3; numNormalp[n_] := Module[{r, i, pp = 1}, Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]];
    a[1] = 1; a[n_] := Module[{t = 1, q = n, pp}, While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]];
    Array[a, 40] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
  • PARI
    a(n)=if(n==1,return(1));my(r,i,t=3^n/n);fordiv(n/3^valuation(n,3), d, r=znorder(Mod(3,d)); i=eulerphi(d)/r; t*=(1-1/3^r)^i);t \\ Charles R Greathouse IV, Jan 03 2013

Extensions

Terms > 5064320 by Joerg Arndt, Jul 03 2011