A094683 Juggler sequence: if n mod 2 = 0 then floor(sqrt(n)) else floor(n^(3/2)).
0, 1, 1, 5, 2, 11, 2, 18, 2, 27, 3, 36, 3, 46, 3, 58, 4, 70, 4, 82, 4, 96, 4, 110, 4, 125, 5, 140, 5, 156, 5, 172, 5, 189, 5, 207, 6, 225, 6, 243, 6, 262, 6, 281, 6, 301, 6, 322, 6, 343, 7, 364, 7, 385, 7, 407, 7, 430, 7, 453, 7, 476, 7, 500, 8, 524, 8, 548, 8, 573, 8, 598, 8, 623, 8, 649
Offset: 0
Keywords
References
- C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 233.
Links
- Karl V. Boddy, Table of n, a(n) for n = 0..10000
- Vikram Prasad and M. A. Prasad, Estimates of the maximum excursion constant and stopping constant of juggler-like sequences, ResearchGate, 2025.
- Harry J. Smith, Juggler Sequence
- Eric Weisstein's World of Mathematics, Juggler Sequence
- Wikipedia, Juggler sequence
Programs
-
Maple
A094683 :=proc(n) if n mod 2 = 0 then RETURN(floor(sqrt(n))) else RETURN(floor(n^(3/2))); end if; end proc;
-
Mathematica
Table[If[EvenQ[n], Floor[Sqrt[n]], Floor[n^(3/2)]], {n, 0, 100}] (* Indranil Ghosh, Apr 07 2017 *)
-
PARI
a(n) = if(n%2,sqrtint(n^3), sqrtint(n)); \\ Indranil Ghosh, Apr 08 2017
-
Python
import math from sympy import sqrt def a(n): return int(math.floor(sqrt(n))) if n%2 == 0 else int(math.floor(n**(3/2))) print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 08 2017
-
Python
from math import isqrt def A094683(n): return isqrt(n**3 if n % 2 else n) # Chai Wah Wu, Feb 18 2022
Comments