A094713 Number of ways that prime(n) can be represented as a^2+b^2+c^2 with c >= b >= a > 0.
0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 1, 0, 2, 3, 1, 3, 0, 2, 1, 2, 0, 3, 2, 2, 3, 0, 1, 1, 0, 3, 3, 2, 0, 1, 2, 0, 2, 0, 3, 2, 3, 0, 3, 4, 4, 0, 5, 0, 1, 5, 2, 4, 2, 0, 2, 2, 2, 2, 3, 3, 4, 0, 0, 2, 2, 0, 5, 1, 5, 4, 5, 2, 0, 3, 0, 3, 5, 2, 7, 0, 4, 0, 0, 5, 2, 0, 7, 8, 3, 2, 2, 4, 5, 8, 3
Offset: 1
Keywords
Examples
a(13) = 2 because prime(13) = 41 = 1+4+36 = 9+16+16.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
Crossrefs
Programs
-
Mathematica
lim=25; pLst=Table[0, {PrimePi[lim^2]}]; Do[n=a^2+b^2+c^2; If[n
?(Min[#]>0&)],{n,110}] (* _Harvey P. Dale, Feb 17 2011 *)