cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094723 a(n) = Pell(n+2) - 2^n.

Original entry on oeis.org

1, 3, 8, 21, 54, 137, 344, 857, 2122, 5229, 12836, 31413, 76686, 186833, 454448, 1103921, 2678674, 6494037, 15732284, 38089677, 92173782, 222961529, 539145416, 1303349513, 3150038746, 7611815613, 18390447188, 44426264421, 107310084894
Offset: 0

Views

Author

Paul Barry, May 23 2004

Keywords

Comments

Binomial transform of A052955.
The sequence b(n) = 2*a(n), n >= -1, is an elephant sequence, see A175654. For the corner squares 24 A[5] vectors, with decimal values between 23 and 464, lead to the b(n) sequence. For the central square these vectors lead to the companion sequence A175658. - Johannes W. Meijer, Aug 15 2010

Crossrefs

Cf. A000129.

Programs

  • Magma
    I:=[1, 3, 8]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    LinearRecurrence[{4,-3, -2},{1,3,8},40] (* Vincenzo Librandi, Jun 24 2012 *)

Formula

G.f.: (1 - x - x^2)/((1-2*x)*(1 - 2*x - x^2)).
a(n) = ((1+sqrt(2))^n*(3*sqrt(2)/4+1) - (3*sqrt(2)/4-1)*(1-sqrt(2))^n) - 2^n.
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3). - Vincenzo Librandi, Jun 24 2012