A094723 a(n) = Pell(n+2) - 2^n.
1, 3, 8, 21, 54, 137, 344, 857, 2122, 5229, 12836, 31413, 76686, 186833, 454448, 1103921, 2678674, 6494037, 15732284, 38089677, 92173782, 222961529, 539145416, 1303349513, 3150038746, 7611815613, 18390447188, 44426264421, 107310084894
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-2).
Crossrefs
Cf. A000129.
Programs
-
Magma
I:=[1, 3, 8]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2012
-
Mathematica
LinearRecurrence[{4,-3, -2},{1,3,8},40] (* Vincenzo Librandi, Jun 24 2012 *)
Formula
G.f.: (1 - x - x^2)/((1-2*x)*(1 - 2*x - x^2)).
a(n) = ((1+sqrt(2))^n*(3*sqrt(2)/4+1) - (3*sqrt(2)/4-1)*(1-sqrt(2))^n) - 2^n.
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3). - Vincenzo Librandi, Jun 24 2012
Comments