cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094779 Let 2^k = smallest power of 2 >= binomial(n,[n/2]); a(n) = 2^k - binomial(n,[n/2]).

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 29, 58, 2, 4, 50, 100, 332, 664, 1757, 3514, 8458, 16916, 38694, 77388, 171572, 343144, 745074, 1490148, 3188308, 6376616, 13496132, 26992264, 56658968, 113317936, 236330717, 472661434, 980680538, 1961361076, 4052366942, 8104733884
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2004

Keywords

Comments

Suggested by reading the Knuth article.
a(n+1) < a(n) for n = 8, 40, 162, 650... - Ivan Neretin, Jun 25 2015

Examples

			C(30,15) = 155117520; 2^28 = 268435456; difference is 113317936.
		

References

  • D. E. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory, 32 (No. 1, 1986), 51-53.

Crossrefs

Programs

  • Mathematica
    Table[-(b = Binomial[n, Quotient[n, 2]]) + 2^Ceiling[Log2[b]], {n, 0, 36}] (* Ivan Neretin, Jun 25 2015 *)