cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094781 Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 3, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 1, 3, 2, 2, 3, 1, 3, 3, 3, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 12 2004

Keywords

Comments

T(1,i) = T(i,1) = A090822(i). For i and j > 1, T(i,j) = max {k1, k2}, where k1 = curling number of (T(i,1), T(i,2)...,T(i,j-1)), k2 = curling number of (T(1,j), T(2,j)...,T(i-1,j)).
The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length).

Examples

			Array begins:
1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)
1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)
2 2 2 3 2 2 2 3 2 2 2 3 3 2 ... (A091787)
1 1 3 1 1 3 3 2 1 1 2 1 1 2 ... (A094782)
1 1 2 1 1 2 2 2 3 1 2 1 1 2 ... (A094839)
2 2 2 3 2 1 1 2 1 2 3 2 2 3 ...
2 2 2 3 2 1 1 3 1 2 ...
		

Crossrefs