A094841 Let p = n-th odd prime. Then a(n) = least positive integer congruent to 3 modulo 8 such that Legendre(-a(n), q) = -1 for all odd primes q <= p.
19, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 77683, 77683, 1333963, 2404147, 2404147, 20950603, 36254563, 51599563, 96295483, 96295483, 114148483, 269497867, 269497867, 269497867, 269497867, 585811843, 52947440683
Offset: 1
Keywords
Links
- William P. Orrick, Table of n, a(n) for n = 1..58 (first 28 terms from N. J. A. Sloane)
- M. J. Jacobson, Jr., Computational Techniques in Quadratic Fields, Master's thesis, University of Manitoba, Winnipeg, Manitoba, 1995. (This sequence is given in Table 6.6.)
- Michael John Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comp. 72 (2003), 499-519.
- D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
Crossrefs
Programs
-
PARI
isok(m, oddpn) = {forprime(q=3, oddpn, if (kronecker(-m, q) != -1, return (0));); return (1);} a(n) = {oddpn = prime(n+1); m = 3; while(! isok(m, oddpn), m += 8); m;} \\ Michel Marcus, Oct 17 2017
Formula
a(n) = 4*A181667(n+1) - 1. - William P. Orrick, Mar 19 2017
Comments