cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094893 Total area below the lattice paths of length n defined by the rule [(0),(k)->(k-1)(k+1)] (Dyck paths).

Original entry on oeis.org

1, 4, 12, 34, 84, 212, 488, 1162, 2580, 5932, 12888, 28948, 61992, 136936, 290256, 633178, 1331892, 2877308, 6016760, 12897340, 26843256, 57175384, 118545072, 251163204, 519103624, 1094915512, 2256939888, 4742198632, 9752832720
Offset: 1

Views

Author

Donatella Merlini (merlini(AT)dsi.unifi.it), Jun 16 2004

Keywords

Programs

  • Mathematica
    CoefficientList[ Series[(1 + x - Sqrt[1 - 4*x^2])/((1 - 2*x)*(1 - 4*x^2)), {x, 0, 30}], x] (* Robert G. Wilson v, Jun 15 2004 *)
  • PARI
    x='x+O('x^50); Vec((1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2))) \\ G. C. Greubel, Feb 16 2017

Formula

G.f.: (1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2)).
a(n) ~ 3*n*2^(n-2) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence: n*(3*n-5)*a(n) +4*(-3*n+4)*a(n-1) +4*(-6*n^2+13*n-1)*a(n-2) +8*(6*n-5)*a(n-3) +16*(3*n-2)*(n-2)*a(n-4)=0. - R. J. Mathar, Aug 21 2018
D-finite with recurrence: n*a(n) -2*n*a(n-1) +4*(-2*n+3)*a(n-2) +8*(2*n-3)*a(n-3) +16*(n-3)*a(n-4) +32*(-n+3)*a(n-5)=0. - R. J. Mathar, Aug 21 2018

Extensions

More terms from Robert G. Wilson v, Jun 16 2004