A094893 Total area below the lattice paths of length n defined by the rule [(0),(k)->(k-1)(k+1)] (Dyck paths).
1, 4, 12, 34, 84, 212, 488, 1162, 2580, 5932, 12888, 28948, 61992, 136936, 290256, 633178, 1331892, 2877308, 6016760, 12897340, 26843256, 57175384, 118545072, 251163204, 519103624, 1094915512, 2256939888, 4742198632, 9752832720
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- D. Merlini, Generating functions for the area below some lattice paths, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.
Programs
-
Mathematica
CoefficientList[ Series[(1 + x - Sqrt[1 - 4*x^2])/((1 - 2*x)*(1 - 4*x^2)), {x, 0, 30}], x] (* Robert G. Wilson v, Jun 15 2004 *)
-
PARI
x='x+O('x^50); Vec((1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2))) \\ G. C. Greubel, Feb 16 2017
Formula
G.f.: (1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2)).
a(n) ~ 3*n*2^(n-2) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence: n*(3*n-5)*a(n) +4*(-3*n+4)*a(n-1) +4*(-6*n^2+13*n-1)*a(n-2) +8*(6*n-5)*a(n-3) +16*(3*n-2)*(n-2)*a(n-4)=0. - R. J. Mathar, Aug 21 2018
D-finite with recurrence: n*a(n) -2*n*a(n-1) +4*(-2*n+3)*a(n-2) +8*(2*n-3)*a(n-3) +16*(n-3)*a(n-4) +32*(-n+3)*a(n-5)=0. - R. J. Mathar, Aug 21 2018
Extensions
More terms from Robert G. Wilson v, Jun 16 2004