A094895 Sequence generated from a Knight's tour of a 4 X 4 chessboard considered as a matrix.
1, 280, 8524, 295840, 10014256, 340831360, 11585508544, 393929320960, 13393420731136, 455377714186240, 15482831007960064, 526416344465121280, 17898154990259286016, 608537275441252433920, 20690267318823093059584
Offset: 1
Examples
a(3) = 8524, leftmost term of M^3 * [1 0 0 0]: [8524, 8816, 8780, 8560]. a(5) = 10014256 = 24*295840 + 324*8524 + 544*280.
References
- John J. Watkins, "Across the Board, The Mathematics of Chessboard Problems" Princeton University Press, 2004, p. 76.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..650
- Index entries for linear recurrences with constant coefficients, signature (24,324,544).
Programs
-
GAP
List([1..20], n-> 2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1))); # G. C. Greubel, Jul 11 2019
-
Magma
[2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1)): n in [1..20]]; // G. C. Greubel, Jul 11 2019
-
Mathematica
a[n_] := (MatrixPower[{{1, 6, 15, 12}, {14, 9, 4, 7}, {5, 2, 11, 16}, {10, 13, 8, 3}}, n].{{1}, {0}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 20}] (* Robert G. Wilson v, Jun 16 2004 *) Table[2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1)), {n,20}] (* G. C. Greubel, Jul 11 2019 *)
-
PARI
vector(20, n, 2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1))) \\ G. C. Greubel, Jul 11 2019
-
Sage
[2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1)) for n in (1..20)] # G. C. Greubel, Jul 11 2019
Formula
Begin with the 4 X 4 matrix M = [1 6 15 12 / 14 9 4 7 / 5 2 11 16 / 10 13 8 3]. Then a(n) = leftmost term in M^n * [1 0 0 0]. Recursion method: a(n+3) = 24*a(n+2) + 324*a(n+1) + 544*a(n); n>4.
From Colin Barker, Oct 21 2012: (Start)
a(n) = 2^(n-2)*(17*(-4)^n + 153*(-1)^n + 15*17^n)/17.
G.f.: x*(1 +256*x +1480*x^2)/((1+2*x)*(1+8*x)*(1-34*x)). (End)
Extensions
Edited and extended by Robert G. Wilson v, Jun 16 2004
Comments