A094928 Let p = n-th prime == 1 mod 8 (A007519); a(n) = smallest prime q such that p is not a square mod q.
3, 3, 5, 3, 5, 3, 3, 5, 3, 7, 3, 3, 5, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 3, 3, 5, 3, 7, 3, 3, 3, 3, 5, 3, 3, 11, 5, 3, 3, 11, 5, 3, 11, 3, 7, 3, 5, 7, 3, 3, 3, 3, 7, 3, 3, 7, 5, 3, 3, 5, 5, 11, 5, 3, 3, 5, 5, 3, 7, 5, 3, 5, 3, 7, 3, 7, 3, 5, 3, 3, 3, 5, 11, 5, 3, 5, 3, 3, 13, 5, 3, 3, 3, 3, 5, 5, 3, 5, 3, 7
Offset: 1
Examples
n=3, p = 73, a(3) = q = 5: Legendre(73,5) = -1.
References
- M. Kneser, Quadratische Formen, Springer, 2002; see Hilfssatz 18.3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(p) local q; q:= 3: do if numtheory:-quadres(p,q) = -1 then return q fi; q:= nextprime(q); od; end proc: map(f, select(isprime, [seq(p,p=1..10000,8)])); # Robert Israel, May 06 2019
-
Mathematica
f[n_] := Prime[ Position[ JacobiSymbol[n, Select[Range[3, n - 1], PrimeQ[ # ] &]], -1][[1, 1]] + 1]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 1 &] (* Robert G. Wilson v, Jun 23 2004 *)
Formula
Extensions
More terms from Robert G. Wilson v, Jun 23 2004