cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094928 Let p = n-th prime == 1 mod 8 (A007519); a(n) = smallest prime q such that p is not a square mod q.

Original entry on oeis.org

3, 3, 5, 3, 5, 3, 3, 5, 3, 7, 3, 3, 5, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 3, 3, 5, 3, 7, 3, 3, 3, 3, 5, 3, 3, 11, 5, 3, 3, 11, 5, 3, 11, 3, 7, 3, 5, 7, 3, 3, 3, 3, 7, 3, 3, 7, 5, 3, 3, 5, 5, 11, 5, 3, 3, 5, 5, 3, 7, 5, 3, 5, 3, 7, 3, 7, 3, 5, 3, 3, 3, 5, 11, 5, 3, 5, 3, 3, 13, 5, 3, 3, 3, 3, 5, 5, 3, 5, 3, 7
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2004

Keywords

Examples

			n=3, p = 73, a(3) = q = 5: Legendre(73,5) = -1.
		

References

  • M. Kneser, Quadratische Formen, Springer, 2002; see Hilfssatz 18.3.

Crossrefs

Subsequence of A094929.

Programs

  • Maple
    f:= proc(p) local q;
         q:= 3:
         do
          if numtheory:-quadres(p,q) = -1 then return q fi;
          q:= nextprime(q);
         od;
    end proc:
    map(f, select(isprime, [seq(p,p=1..10000,8)])); # Robert Israel, May 06 2019
  • Mathematica
    f[n_] := Prime[ Position[ JacobiSymbol[n, Select[Range[3, n - 1], PrimeQ[ # ] &]], -1][[1, 1]] + 1]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 1 &] (* Robert G. Wilson v, Jun 23 2004 *)

Formula

a(n) = A094929(A269704(n)). - Robert Israel, May 06 2019

Extensions

More terms from Robert G. Wilson v, Jun 23 2004