cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094952 A sequence derived from pentagonal numbers, or a Stirling number of the first kind matrix.

Original entry on oeis.org

6, 35, 105, 234, 440, 741, 1155, 1700, 2394, 3255, 4301, 5550, 7020, 8729, 10695, 12936, 15470, 18315, 21489, 25010, 28896, 33165, 37835, 42924, 48450, 54431, 60885, 67830, 75284, 83265, 91791, 100880, 110550, 120819, 131705, 143226, 155400, 168245, 181779, 196020
Offset: 1

Views

Author

Gary W. Adamson, May 26 2004

Keywords

Examples

			a(5) = 440 = (2n+1)*A005449(n) = 11 * 40.
a(6) = 741 since M^7 * [1 0 0 0] = [1 -6 57 -741].
		

References

  • Ruben Aldrovandi, Special Matrices of Mathematical Physics, World Scientific, 2001, 13.3.1 "Inverting Bell Matrices", p. 171.

Crossrefs

Programs

  • Mathematica
    a[n_] := (MatrixPower[{{1, 0, 0, 0}, {-1, 1, 0, 0}, {2, -3, 1, 0}, {-6, 11, -6, 1}}, n].{{1}, {0}, {0}, {0}})[[4, 1]]; Table[ Abs[ a[n]], {n, 36}] (* Robert G. Wilson v, Jun 05 2004 *)
    a[n_] := n*(2*n + 1)*(3*n + 1)/2; Array[a, 50] (* Amiram Eldar, Jun 01 2025 *)
  • PARI
    a(n) = n*(2*n + 1)*(3*n + 1)/2; \\ Amiram Eldar, Jun 01 2025

Formula

a(n) = (2n+1)*A005449(n) where A005449 = 2, 7, 15, 26, 40, ...
Given the 4th-order Stirling number of the first kind matrix [1 0 0 0 / -1 1 0 0 / 2 -3 1 0 / -6 11 -6 1] = M, M^n * [1 0 0 0] = [1 -n A005449(n) -a(n)].
Empirical g.f.: x*(6+11*x+x^2)/(1-x)^4. - Colin Barker, Jan 14 2012
From Amiram Eldar, Jun 01 2025: (Start)
Sum_{n>=1} 1/a(n) = 10 - sqrt(3)*Pi + 8*log(2) - 9*log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)-1)*Pi + 8*log(2) - 10. (End)

Extensions

Edited by Robert G. Wilson v, Jun 05 2004