A094952 A sequence derived from pentagonal numbers, or a Stirling number of the first kind matrix.
6, 35, 105, 234, 440, 741, 1155, 1700, 2394, 3255, 4301, 5550, 7020, 8729, 10695, 12936, 15470, 18315, 21489, 25010, 28896, 33165, 37835, 42924, 48450, 54431, 60885, 67830, 75284, 83265, 91791, 100880, 110550, 120819, 131705, 143226, 155400, 168245, 181779, 196020
Offset: 1
Keywords
Examples
a(5) = 440 = (2n+1)*A005449(n) = 11 * 40. a(6) = 741 since M^7 * [1 0 0 0] = [1 -6 57 -741].
References
- Ruben Aldrovandi, Special Matrices of Mathematical Physics, World Scientific, 2001, 13.3.1 "Inverting Bell Matrices", p. 171.
Links
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
Crossrefs
Cf. A005449.
Programs
-
Mathematica
a[n_] := (MatrixPower[{{1, 0, 0, 0}, {-1, 1, 0, 0}, {2, -3, 1, 0}, {-6, 11, -6, 1}}, n].{{1}, {0}, {0}, {0}})[[4, 1]]; Table[ Abs[ a[n]], {n, 36}] (* Robert G. Wilson v, Jun 05 2004 *) a[n_] := n*(2*n + 1)*(3*n + 1)/2; Array[a, 50] (* Amiram Eldar, Jun 01 2025 *)
-
PARI
a(n) = n*(2*n + 1)*(3*n + 1)/2; \\ Amiram Eldar, Jun 01 2025
Formula
Given the 4th-order Stirling number of the first kind matrix [1 0 0 0 / -1 1 0 0 / 2 -3 1 0 / -6 11 -6 1] = M, M^n * [1 0 0 0] = [1 -n A005449(n) -a(n)].
Empirical g.f.: x*(6+11*x+x^2)/(1-x)^4. - Colin Barker, Jan 14 2012
From Amiram Eldar, Jun 01 2025: (Start)
Sum_{n>=1} 1/a(n) = 10 - sqrt(3)*Pi + 8*log(2) - 9*log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)-1)*Pi + 8*log(2) - 10. (End)
Extensions
Edited by Robert G. Wilson v, Jun 05 2004