cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005945 Number of n-step mappings with 4 inputs.

Original entry on oeis.org

0, 1, 15, 60, 154, 315, 561, 910, 1380, 1989, 2755, 3696, 4830, 6175, 7749, 9570, 11656, 14025, 16695, 19684, 23010, 26691, 30745, 35190, 40044, 45325, 51051, 57240, 63910, 71079, 78765, 86986, 95760, 105105, 115039, 125580, 136746
Offset: 0

Views

Author

Keywords

Comments

a(n) is the coefficient of x^4/4! in n-th iteration of exp(x)-1.

Examples

			G.f. = x + 15*x^2 + 60*x^3 + 154*x^4 + 315*x^5 + 561*x^6 + 910*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005920, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. [Bruno Berselli, Apr 25 2010]
Cf. A094952.

Programs

  • Magma
    I:=[0, 1, 15, 60]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi Jun 18 2012
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,1,15,60},50] (* Vincenzo Librandi, Jun 18 2012 *)
    a[ n_] := 3 n^3 - 5/2 n^2 + 1/2 n; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = 3*n^3 - 5/2*n^2 + 1/2*n}; /* Michael Somos, Jan 23 2014 */
    

Formula

G.f.: x*(1+11*x+6*x^2)/(1-x)^4. a(n)=n*(3*n-1)*(2*n-1)/2.
For n>0, a(n) = n*A000567(n) - A000217(n-1). - Bruno Berselli, Apr 25 2010; Feb 01 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 18 2012
a(n) = -A094952(-n) for all n in Z. - Michael Somos, Jan 23 2014

Extensions

Edited by Michael Somos, Oct 29 2002

A111933 Triangle read by rows, generated from Stirling cycle numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 7, 6, 1, 4, 15, 35, 24, 1, 5, 26, 105, 228, 120, 1, 6, 40, 234, 947, 1834, 720, 1, 7, 57, 440, 2696, 10472, 17582, 5040, 1, 8, 77, 741, 6170, 37919, 137337, 195866, 40320, 1, 9, 100, 1155, 12244, 105315, 630521, 2085605, 2487832, 362880
Offset: 1

Views

Author

Gary W. Adamson, Aug 21 2005

Keywords

Comments

Let M = the infinite lower triangular matrix of Stirling cycle numbers (A008275). Perform M^n * [1, 0, 0, 0, ...] forming an array. Antidiagonals of that array become the rows of this triangle.

Examples

			Row 5 of the triangle = 1, 4, 15, 35, 24; generated from M^n * [1,0,0,0,...] (n = 1 through 5); then take antidiagonals.
Terms in the array, first few rows are:
  1, 1,  2,   6,    24,    120, ...
  1, 2,  7,  35,   228,   1834, ...
  1, 3, 15, 105,   947,  10472, ...
  1, 4, 26, 234,  2697,  37919, ...
  1, 5, 40, 440,  6170, 105315, ...
  1, 6, 57, 741, 12244, 245755, ...
  ...
First few rows of the triangle are:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  7,   6;
  1, 4, 15,  35,  24;
  1, 5, 26, 105, 228,  120;
  1, 6, 40, 234, 947, 1834, 720;
  ...
		

Crossrefs

Column 3 of the array = A005449.
Column 4 of the array = A094952.

Extensions

a(28), a(36) and a(45) corrected by Seiichi Manyama, Feb 11 2022

A368045 Triangle read by rows. T(n, k) = (k*(k + 1)*(2*k + 1) + n*(n + 1)*(2*n + 1)) / 6.

Original entry on oeis.org

0, 1, 2, 5, 6, 10, 14, 15, 19, 28, 30, 31, 35, 44, 60, 55, 56, 60, 69, 85, 110, 91, 92, 96, 105, 121, 146, 182, 140, 141, 145, 154, 170, 195, 231, 280, 204, 205, 209, 218, 234, 259, 295, 344, 408, 285, 286, 290, 299, 315, 340, 376, 425, 489, 570
Offset: 0

Views

Author

Peter Luschny, Dec 09 2023

Keywords

Comments

Consider a sequence-to-triangle transformation a -> T, where a is a 0-based sequence and T a regular (0, 0)-based triangular array. The transformation is recursively defined, starting with T(0, 0) = 0, and T(n, n) = a(n) + T(n, n - 1) for n > 0. For k <> n let T(n, k) = a(n) + T(n-1, k).
If a(n) = 1, then T = A051162; if a(n) = n, then T = A367964 (generalizing the triangular numbers); if a(n) = n^2, then T is this triangle.
In the multiplicative form of the transformation, T(0, 0) is set to 1, and the operation '+' is replaced by '*'. For instance, a(n) = 2 is then mapped to T = A368043 and a(n) = n to A143216.

Examples

			Triangle T(n, k) starts:
  [0] [  0]
  [1] [  1,   2]
  [2] [  5,   6,  10]
  [3] [ 14,  15,  19,  28]
  [4] [ 30,  31,  35,  44,  60]
  [5] [ 55,  56,  60,  69,  85, 110]
  [6] [ 91,  92,  96, 105, 121, 146, 182]
  [7] [140, 141, 145, 154, 170, 195, 231, 280]
  [8] [204, 205, 209, 218, 234, 259, 295, 344, 408]
  [9] [285, 286, 290, 299, 315, 340, 376, 425, 489, 570]
		

Crossrefs

Cf. A000330 (T(n,0)), A056520 (T(n,1)), A005900 (T(n-1,n)), A006331 (T(n,n)), A094952 (T(2*n,n)), A368046 (row sums), A368047 (alternating row sums).
Cf. A051162 (transform of n^0), A367964 (transform of n^1), this sequence (transform of n^2).

Programs

  • Mathematica
    Module[{n=1},NestList[Append[#+n^2,Last[#]+2(n++^2)]&,{0},10]] (* or *)
    Table[(k(k+1)(2k+1)+n(n+1)(2n+1))/6,{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 10 2023 *)
  • Python
    from functools import cache
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0: return [0]
        row = Trow(n - 1) + [0]
        for k in range(n): row[k] += n * n
        row[n] = row[n - 1] + n * n
        return row
    print([k for n in range(10) for k in Trow(n)])

Formula

T(n, k) = A000330(k) + A000330(n).
Showing 1-3 of 3 results.