A095070 One-bit dominant primes, i.e., primes whose binary expansion contains more 1's than 0's.
3, 5, 7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 59, 61, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 151, 157, 167, 173, 179, 181, 191, 199, 211, 223, 227, 229, 233, 239, 241, 251, 271, 283, 307, 311, 313, 317, 331, 347, 349, 359, 367, 373, 379, 383
Offset: 1
Examples
23 is in the sequence because 23 is a prime and 23_10 = 10111_2. '10111' has four 1's and one 0. - _Indranil Ghosh_, Jan 31 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..20000
- Antti Karttunen and John Moyer, C-program for computing the initial terms of this sequence.
- MathOverflow, Primes with more ones than zeroes in their Binary expansion, 2012.
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[70]], Plus@@IntegerDigits[#, 2] > Length[IntegerDigits[#, 2]]/2 &] (* Alonso del Arte, Jan 11 2011 *) Select[Prime[Range[100]], Differences[DigitCount[#, 2]][[1]] < 0 &] (* Amiram Eldar, Jul 25 2023 *)
-
PARI
B(x) = {nB = floor(log(x)/log(2)); b1 = 0; b0 = 0; for(i = 0, nB, if(bittest(x,i), b1++;, b0++;); ); if(b1 > b0, return(1);, return(0););}; forprime(x = 3, 383, if(B(x), print1(x, ", "); ); ); \\ Washington Bomfim, Jan 11 2011
-
PARI
has(n)=hammingweight(n)>#binary(n)/2 select(has, primes(500)) \\ Charles R Greathouse IV, May 02 2013
-
Python
# Program to generate the b-file from sympy import isprime i=1 j=1 while j<=200: if isprime(i) and bin(i)[2:].count("1")>bin(i)[2:].count("0"): print(str(j)+" "+str(i)) j+=1 i+=1 # Indranil Ghosh, Jan 31 2017